MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4037	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3	Mark Sche	eme		Syllabus	Paper
		GCE O LEVEL – Octobe	r/November 2	2013	4037	12
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1, B1 [3]	B1 for	each	
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	M1 DM1		any use of $b^2 - 4ac$ for solution of their	quadratic in k	
	$k=-\frac{5}{2},$	A1	A1 for	critical value(s), $\frac{1}{2}$	not necessary	
	To be below th	the x-axis $k < -\frac{5}{2}$	A1 [4]	A1 for	$k < -\frac{5}{2}$ only	
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ in <i>x</i> -axis, <i>y</i> < 0 $\frac{1}{1}^2 - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$	M1	M1 for	a complete method	l to this point.

Page 4	Mark Schen	ne		Syllabus	Paper		
	GCE O LEVEL – October/	Novem	ber 2	013	4037	12	
-		T					
3 $\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$				M1 for dealing with the fractions, denominator must be correct, be gener with numerator			
$=\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$					$f = x \text{ expansion and use}$ $f + \sin^2 \theta = 1$	e of	
$=\frac{2(1+)}{\cos\theta(1+)}$	$\frac{\sin\theta}{+\sin\theta}$	DM1		M1 for	r attempt to factoris	e	
$=2 \sec \theta$					obtaining final ans	wer correctly	
$= \frac{(\sec \theta + t)}{\sec \theta}$ $= \frac{\sec^2 \theta + t}{\sec^2 \theta}$ $= \frac{2\sec^2 \theta}{\sec^2 \theta}$	$\theta + \frac{1}{\sec \theta + \tan \theta}$	M1 DM1 DM1		M1 for $\tan^2 \theta$			
$= \frac{1}{\sec \theta}$ $= 2 \sec \theta$	$P + \tan \theta$	A1		DM1 for attempt to factorise A1 for obtaining final answer correctly			
4 (i) n (<i>A</i>) = 3		B1	[1]	If elem correct n (A) =	nents listed for (i), t t elements to get B1 = 3. If they are not 1 r given then B1.	hen they must be leading to	
(ii) n (<i>B</i>) = 4		B1	[1]	If elements listed for (ii), then they must correct elements leading to $n(B) = 4$ to g B1. If they are not listed and correct answ given then B1.			
(iii) $A \cup B = \{$	{60°, 240°, 300, 420°, 600°}	√B1	[1]		through on any se o not allow any rep		
(iv) $A \cap B = \{$	{60°, 420°}	√B1	[1]	Follow (ii).	through on any se	ts listed in (i) and	

Page 5	Mark Schem	Syllabus	Paper		
	GCE O LEVEL – October/	November 2	2013	4037	12
5 (i) $9x - \frac{1}{3}co$	s3x(+c)	B1, B1, B1		9x, B1 for $\frac{1}{3}$ or co	983 <i>x</i>
F .	<i>π</i>	[3]		$-\frac{1}{3}\cos 3x$ ne omission of + c	
(ii) $\int 9x - \frac{1}{3} c dx$	9				
	$-\cos 3\pi$ $-\left(\pi - \frac{1}{3}\cos\frac{\pi}{3}\right)$	M1	M1 for to (i)	correct use of limit	its in their answer
$=8\pi + \frac{1}{2}$		A1, A1 [3]	A1 for	each term	
$6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1 - a$	$+\frac{b}{2}-2$	M1	M1 for	substitution of <i>x</i> =	$=\frac{1}{2}$ into f(x)
leading to <i>a</i> +	4b - 8 = 0	A1	A1 for	correct equation in	any form
f(2) = 2f(-1)		M1		attempt to substitution $f(x)$ and use $f(x) + f(-1)$	
8a + 16 + 2b -	2 = 2(-a + 4 - b - 2)	A1		a correct equation	in any form
leading to $10a$ $\therefore a = -2, b =$	+4b+10 = 0 or equivalent = $\frac{5}{2}$	DM1 A1 [6]	attemp obtain	on both previous M t to solve simultane either <i>a</i> or <i>b</i> both correct	

Page 6				Syllabus	Paper
	GCE O LEVEL – October/N	lovember 2	013	4037	12
(ii) 1 (b) (i) 9	60 20 24 28	B1 [1] B1 [1] B1 [1] B1 [1] B1 [1]			
(i.e. 9	$924 - ({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$ 924 - 3M 3W - 2M 4W) 924 - 224 - 28	[1] M1 A1 A1 [3]	correct A1 for	3 terms, at least 2 in terms of C nota any pair (must be a final answer	tion or evaluated.
	$C_{4} = {}^{8}C_{4} \times {}^{4}C_{2} = 420$ $C_{5} \times {}^{4}C_{1} = 224$ ${}^{8}C_{6} = 28$	M1 A1	correct	3 terms, at least 2 in terms of <i>C</i> nota any pair (must be e	tion or evaluated.
	Total $= 672$	A1	A1 for	final answer	
8 (i)		B1 B1 B1 B1	B1 for B1 for	correct shape (-3, 0) or -3 seen of (2, 0) or 2 seen on (0, 6) or 6 seen on	graph
(ii) $\left(-\frac{1}{2}, \frac{2}{2}\right)$	$\left(\frac{25}{4}\right)$	[4] B1, B1 [2]	B1 for	each	
(iii) $k > \frac{25}{4}$	or $\frac{25}{4} < k \ (\le 14)$	B1 [1]			

Page 7		Μ	lark Scheme	9		Syllabus	Paper	
		GCE O LEVEL -	– October/N	ovember 2	013	4037	12	
9 (a) $12x^2$	$^{2}\ln(2x)$	$+1)+4x^3\left(\frac{2}{2x+1}\right)$		M1 A2, 1, 0 [3]				
(b) (i)	$\frac{\mathrm{d}y}{\mathrm{d}x}$ =	$=\frac{(x+2)^{\frac{1}{2}}2-2x(x+x)}{x+2}$	$2)^{-\frac{1}{2}}\frac{1}{2}$	M1, A1		differentiation of a differen	quotient	
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2))$	(-x)	DM1		correct unsimplified or attempt to simpli		
	$=\frac{1}{(x)}$	$\frac{x+4}{x+2)^{\frac{3}{2}}}$		A1 [4]	A1 for given a	correct simplificati	on to obtain the	
Or : $\frac{dy}{dx} =$	= 2 <i>x</i> (-	$\left(\frac{1}{2}\right)(x+2)^{\frac{3}{2}} + (x+2)^{\frac{3}{2}}$	$)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a long $(x+2)^{-\frac{1}{2}}$	product	
	$= (x + x)$ $= \frac{x + x}{(x + x)}$	$2)^{\frac{3}{2}}(2(x+2)-x)$ $\frac{4}{2)^{\frac{3}{2}}}$		DM1 A1	DM1 f	correct unsimplified or attempt to simpli correct simplificati unswer	fy	
(ii) $\frac{10}{\sqrt{x^{-1}}}$	$\frac{0x}{+2}$ (+	<i>c</i>)		M1,A1 [2]	A1 cor	$\frac{1}{5} \times \frac{2x}{\sqrt{x+2}} \text{ or } 5 \times \frac{2x}{\sqrt{x+2}}$ rect only, allow uns ne omission of $+c$		
(iii) $\left[\frac{10}{\sqrt{x}}\right]$	$\left[\frac{0x}{x+2}\right]_2^7$	$=\frac{70}{3}-\frac{20}{2}$		M1		correct application to (b)(ii)	of limits in their	
		$=\frac{40}{3}$		A1 [2]				

Page	e 8	Mark Schen			Paper		
		GCE O LEVEL – October/	November 2	2013	4037	12	
10 (i) v	$\sqrt{20}$ or 4.4	47	B1 [1]				
(ii) C	(ii) Grad $AB = \frac{1}{2}, \perp \text{grad} = -2$			M1 fo	r attempt at a perp g	gradient	
	-4 = -2(x - 1)	M1, A1		M1 for attempt at straight line equation, must be perpendicular and passing through			
U	y = -2x +	6)	[3]		ow unsimplified		
()	$(x-1)^2 + (x-1)^2$	$C(x, y)$ and $BC^{2} = 20$ $(y-4)^{2} = 20$ or $C(x, y)$ and $AC^{2} = 40$	M1	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2)			
()	$(x+3)^2 +$	$(y-2)^2 = 40$	A1		a correct equation		
Ν	leed inter	section with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only			
	eads to $5x^2 - 40y^2$	$x^2 - 10x - 15 = 0$ or -= 0					
	giving $x = 3, -1$ and $y = 0, 8$			M1 for attempt to solve quadratic A1 for each 'pair'			
		ector approach:					
AB	$\overrightarrow{AB} = \begin{pmatrix} 4\\2 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$			May b	e implied		
					r correct approach each element corre	ect	
ÖC		$\begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for	each element corre	ect	

Page 9	Mark Schem	е		Syllabus	Paper
	GCE O LEVEL – October/	November 2	013	4037	12
11 (a) (i) $\begin{pmatrix} 4\\4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]			
(ii) A ²	$\mathbf{P} = \begin{pmatrix} 16 & 9\\ 12 & 13 \end{pmatrix}$	B1, B1 [2]		any 2 correct elemo all correct	ents
	s the inverse matrix of \mathbf{A}^2 $\frac{1}{00} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	√B1, √B1 [2]	Follow	through on their A	2
(b) det $\mathbf{C} = x_1$ = 2.	$(x-1) - (-1)(x^2 - x + 1)$ $x^2 - 2x + 1$	M1 A1	A1 for	attempt to obtain of this correct quadra correct det C	
b ² – 4 <i>ac</i> <	< 0, 4 – 8 < 0	DM1	solve u comple	or use of discrimina sing the formula, o te the square in orc real roots.	r attempt to
No real so	blutions (so det $\mathbf{C} \neq 0$)	A1 [4]		correct reasoning or re no real roots.	or statement that

	Pag	je 10		Mark Schen				Syllabus	Paper
				GCE O LEVEL – October/	Noven	nber 2	013	4037	12
12	(a)	(i)	· · ·	= 299, f(8) = 191	M1			substitution of eith	
			Min p	oint at $(0, -1)$ or when $y = -1$	B1			may be seen on diag	
								n on diagram	innar answer, may
			∴ ran	ge $-1 \le y \le 299$	A1			have \leq for A1, do not	ot allow <i>x</i>
						[3]			
		(ii)	$x \ge 0$ of	or equivalent	B1		Allow	any domain which	will make f a
						[1]	one-on	e function	
								e upper and lower	bound when
							necess	ary.	
	(b)	(i)	$g^{-1}(x)$	$=\ln\left(\frac{x+2}{4}\right)$	M1		M1 for	complete method	to find the form
				(4)			inverse function, must involve ln or lg it		
				(x+2)			approp	riate. May still be	in terms of y.
			1g	$\left(\frac{x+2}{4}\right)$	A1		A1 mu	st be in terms of x	
			or —	lg e		[2]			
		<i>(</i> 1)		<i></i>					
		(ii)	gh(x)	= g(1n5x) = $4e^{1n5x} - 2$	M1			correct order	1. ln5x 2
				- 46 - 2	A1		A1 Ior	correct expression	$4e^{-2}$
			20x -	2 = 18, x = 1	A1		A1 for correct solution from correct		om correct
						[3]	workin	ıg	
			Or h(:	$x = g^{-1}(18)$	M1		M1 for	correct order	
				x = 1n5	A1		A1 for correct equation		
			1 1.						
			leadin	g to $x = 1$	A1		Al for worki	correct solution fro	om correct
							WUIKI	шġ	